Quantitative

 AptitudeCONTENTS
Part A: Verbal Reasoning

1. Number 1
2. Simplification 17
3. Percentage 35
4. Simple and Compound Interest 51
5. Profit and Loss. 61
6. Average 73
7. Ratio and Proportion 81
8. Work and Time 91
9. Time, Speed \& Distance 99
10. Area \& Volume 107
11. Number Series 117
12. Permutation, Combination \& Pro 125

NUMBER SYSTEM

NUMBER SYSTEM

A number system relates quantities and symbols. The base or radix of a number system represents the number of digits or basic symbols in that particular number system.

Decimal is a base (or radix) 10 numeral system. This means that the system has ten symbols or numerals to represent any quantity. These symbols are called Digits. The ten symbols are 1, 2, 3, 4, 5, $6,7,8,9$ and 0 .

Types of Numbers :

Real numbers: Real numbers comprise the full spectrum of numbers. They can take on any form - fractions or whole numbers, decimal points or no decimal points. The full range of real numbers includes decimals that can go on forever and ever without end. For Example: 8, 6, $2+\sqrt{3}, \frac{3}{5}$ etc.
Natural numbers: A natural number is a number that comes naturally. Natural Numbers are counting numbers from 1, 2, 3, $4,5, \ldots \ldots$.

Whole numbers: Whole numbers are just all the natural numbers plus zero.

For Example: $0,1,2,3,4,5$, and so on upto infinity.
Integers: Integers incorporate all the qualities of whole numbers and their opposites (or additive inverses of the whole numbers). Integers can be described as being positive and negative whole numbers.
For Example: $\ldots-3,-2,-1,0,1,2,3, \ldots$

Rational numbers: All numbers of the form $\frac{p}{q}$ where p and q are integers $(q \neq 0)$ are called Rational numbers.

For Example: $4, \frac{3}{4}, 0, \ldots$.

Irrational numbers: Irrational numbers are the opposite of rational numbers. An irrational number cannot be written as a fraction, and decimal values for irrational numbers never end and do not have a repeating pattern in them. 'pi' with its never-ending decimal places, is irrational.

For Example: $\sqrt{7}, \sqrt{5}, 2+\sqrt{2}, \pi, \ldots \ldots$

Even numbers: An even number is one that can be divided evenly by two leaving no remainder, such as $2,4,6$, and 8 .

Odd numbers: An odd number is one that does not divide evenly by two, such as $1,3,5$, and 7 .

Prime numbers: A prime number is a number which can be divided only by 1 and itself. The prime number has only two factors, 1 and itself.

For example: 2, 3, 5, 7, 11, 13, 17, \ldots. are prime numbers.
Composite Number: A Composite Number is a number which can be divided into a number of factors other than 1 and itself. Any composite number has additional factors than 1 and itself.

For example: 4, 6, 8, 9, $10 \ldots$.
Co-primes or Relatively prime numbers: A pair of numbers not having any common factors other than 1 or -1 . (Or alternatively their greatest common factor is 1 or -1)

For Example: 15 and 28 are co-prime, because the factors of 15 $(1,3,5,15)$, and the factors of $28(1,2,4,7,14,28)$ are not in common (except for 1).

Twin Primes: A pair of prime numbers that differ by 2 (successive odd numbers that are both Prime numbers).

For Example: $(3,5),(5,7),(11,13), \ldots$

Numbers at a glance	
Example	Number type
0.45	rational, real
3.1415926535....	irrational, real
3.14159	rational, real
0	whole, integer, rational, real
$\frac{5}{3}$	rational, real
$1 \frac{2}{3}=\frac{5}{3}$	rational, real
$\sqrt{2}=1.41421356$	irrational, real
$-\sqrt{81}=-9$	integer, rational, real
-3	rational, real
$\sqrt{25}=5$	natural, whole, integer, rational, real
$9 / 3=3$	natural, whole, integer, rational, real
-0.75	rational, real
$\pi=3.1428571 \ldots$	irrational, real
3.144444.......	rational, real (since it is a repeating decimal)
$\sqrt{-9}$	Imaginary

PLACE VALUE AND FACE VALUE

In decimal number system, the value of a digit depends on its place or position in the number. Each place has a value of 10 times the place to its right.
Place value : Place value is a positional system of notation in which the position of a number with respect to a point determines its value. In the decimal system, the value of the digits is based on the number ten.
Each position in a decimal number has a value that is a power of 10. A decimal point separates the non-negative powers of 10 , $(10)^{0}=1,(10)^{1}=10,(10)^{2}=100,(10)^{3}=1000$, etc.) on the left from the negative powers of $10,(10)^{-1}=\frac{1}{10},(10)^{-2}=\frac{1}{100},(10)^{-3}=\frac{1}{1000}$, etc.) on the right.
Face value : The face value of a number is the value of the number without regard to where it is in another number. So 47 always has
a face value of 7 . However the place value includes the position of the number in another number. So in the number 4,732, the 7 has a place value of 700 , but has a face value of just 7 .

Example: Place and face values of the digits in the number 495, 784:

Number	Digit	Place value	Face value
495,784	4	400000	4
	9	90000	9
	5	5000	5
	7	700	7
	8	80	8
	4	4	4

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching
NAMES OF DIGITS ACCORDING TO THEIR PLACE VALUE.

Indian Method	International Method		
Unit	Unit	$\mathbf{1}$	$\mathbf{1}$
Ten	Ten	$\mathbf{1 0}$	$\mathbf{1 0}^{1}$
Hundred	Hundred	$\mathbf{1 0 0}$	$\mathbf{1 0}^{2}$
Thousand	Thousand	$\mathbf{1 0 0 0}$	$\mathbf{1 0}^{3}$
Ten thousand	Ten thousand	$\mathbf{1 0 0 0 0}$	$\mathbf{1 0}^{4}$
Lakh	Hundred thousand	$\mathbf{1 0 0 0 0 0}$	$\mathbf{1 0}^{5}$
Ten lakh	One million	$\mathbf{1 0 0 0 0 0 0}$	$\mathbf{1 0}^{6}$
Crore	Ten million	$\mathbf{1 0 0 0 0 0 0 0}$	$\mathbf{1 0}^{7}$
Ten crore	Hundred million	$\mathbf{1 0 0 0 0 0 0 0 0}$	$\mathbf{1 0}^{\mathbf{8}}$
Arab	Billion	$\mathbf{1 0 0 0 0 0 0 0 0 0}$	$\mathbf{1 0}^{9}$

FRACTIONS

A fraction is known as a rational number and written in the form of $\frac{p}{q}$ where p and q are integers and $q \neq 0$. The lower number ' q ' is known as denominator and the upper number ' p ' is known as numerator.

Type of Fractions

Proper Fraction: The fraction in which numerator is less than the denominator is called a proper fraction.

For Example: $\frac{2}{3}, \frac{5}{6}, \frac{10}{11}$ etc.
Improper fraction : The fraction in which numerator is greater than the denominator is called improper fraction.

For Example : $\frac{3}{2} \cdot \frac{6}{5}, \frac{8}{7}$, etc
Mixed fraction : Mixed fraction is a composite of a fraction and a whole number.

For example: $2 \frac{1}{2}, 3 \frac{3}{4}, 5 \frac{6}{7}$ etc.
Complex fraction: A complex fraction is that fraction in which numerator or denominator or both are fractions.

For Example: $\frac{\frac{2}{3}}{4}, \frac{2}{\frac{5}{6}}, \frac{3}{7} \frac{3}{6}$, etc.
Decimal fraction: The fraction whose denominator is 10 or its higher power, is called a decimal fraction.

For Example: $\frac{7}{10}, \frac{11}{100}, \frac{12}{1000}$
Continued fraction: Fractions which contain addition or subtraction of fractions or a series of fractions generally in denominator (sometimes in numerator also) are called continued

These are It is also defined as fractions whose numerator is an integer and whose denominator is an integer plus a fraction.

For Example: 2

Comparison of Fractions

* If the denominators of all the given fractions are equal then the fraction with greater numerator will be the greater fraction.

For Example: $\frac{4}{7}, \frac{2}{7}, \frac{8}{7}, \frac{9}{7}$
then, $\frac{9}{7}>\frac{8}{7}>\frac{4}{7}>\frac{2}{7}$

* If the numerators of all the given fractions are equal then the fraction with smaller denominator will be greater fraction.

For Example: $\frac{7}{4}, \frac{7}{2}, \frac{7}{8}, \frac{7}{9}$ then, $\frac{7}{2}>\frac{7}{4}>\frac{7}{8}>\frac{7}{9}$

* When numerator is greater than denominator and the differences of numerator and denominator are equal, then the fraction with smaller numerator will be the greater faction.

For Example: $\frac{5}{2}, \frac{7}{4}, \frac{11}{8}, \frac{8}{5}$
then, $\frac{5}{2}>\frac{7}{4}>\frac{8}{5}>\frac{11}{8}$

Quicker Method (Cross Multiplication)

This is a shortcut method to compare fractions. Using this method we can compare all types of fractions.

The fraction whose numerator is in the greater product is greater.

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

Since 36 is greater than 35 , hence, $\frac{4}{7}>\frac{5}{9}$

LCM AND HCF

Factors and Multiples : If a number x divides another number y exactly, we say that x is a factor of y. Also y is called a multiple of x.

Highest Common Factor (HCF)

The H.C.F. of two or more than two numbers is the greatest number that divides each one of them exactly. There are two methods for determining H.C.F.:

1. Prime factorization method : We can determine the H.C.F. of 144,180 and 108 from following process.

$$
\begin{aligned}
& 144=2 \times 2 \times 2 \times 2 \times 3 \times 3 \\
& 108=2 \times 2 \times 3 \times 3 \times 3 \\
& 180=\underline{2 \times 2} \times \underline{3 \times 3} \times 5
\end{aligned}
$$

In prime factoriation of the above mentioned three numbers, the common factorization is $2 \times 2 \times 3 \times 3=36$.
Thus, required H.C.F. of 144,180 and 108 is 36 .
2. Division Method: We can determine the H.C.F. of above mentioned numbers from the following process :

Thus, the H.C.F of 144 and 180 is 36.
Now, we find the H.C.F of 36 and 108.

$$
36)_{\frac{108}{108}}^{108}(3
$$

So, required H.C.F is 36 .

Lowest Common Multiple (LCM) :

The L.C.M. of two or more than two numbers is the least number which is exactly divisible by each one of the given numbers.

* Formula: Product of two numbers
$=($ their H.C.F. $) \times($ their L.C.M. $)$.

We can determine L.C.M. of two given numbers by the following two methods:

1. Prime Factorization method: Suppose we have to find the L.C.M. of 12,16 and 30 , then

$$
\begin{aligned}
& 12=2 \times 2 \times 3 \\
& 16=2 \times 2 \times 2 \times 2 \\
& 30=2 \times 3 \times 5
\end{aligned}
$$

Thus, required L.C.M. of the given numbers

$$
=2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5=240
$$

2. Division method: We can determine the L.C.M. of above mentioned numbers from the following process :

$$
\begin{array}{l|l}
2 & 12,16,30 \\
2 & 6,8,15 \\
3 & 3,4,15 \\
\hline & 1,4,5
\end{array}
$$

Thus, required L.C.M. of the given number

$$
=2 \times 2 \times 3 \times 1 \times 4 \times 5=240
$$

H.C.F. and L.C.M. of Fractions:

* H.C.F. of factions $=\frac{\text { H.C.F.of Numerators }}{\text { L.C.M.of Denominators }}$

For Example, we have to find the H.C.F. of $\frac{1}{2}$ and $\frac{3}{4}$.
Then, H.C.F. of $\frac{1}{2}$ and $\frac{3}{4}=\frac{\text { H.C.F. of } 1 \text { and } 3}{\text { L.C.M.of } 2 \text { and } 4}=\frac{1}{4}$
*. L.C.M of fractions $=\frac{\text { L.C.M. of Numerators }}{\text { H.C.F.Denominators }}$

For Example, we have to find the L.C.M. of $\frac{1}{2}$ and $\frac{3}{4}$.
Then, L.C.M. of $\frac{1}{2}$ and $\frac{3}{4}=\frac{\text { L.C.M. of } 1 \text { and } 3}{\text { H.C.F. of } 2 \text { and } 4}=\frac{3}{2}$

Formulas to Cemember

* The product of two numbers $=($ HCF of the numbers $) \times($ LCM of the numbers $)$
* Sum of first n natural numbers $=\frac{n(n+1)}{2}$
* Sum of first n even numbers $=\frac{\text { Last even number (last even number }+2 \text {) }}{4}$
* Sum of first n odd numbers $=\left(\frac{\text { last odd number }+1}{2}\right)^{2}$

In the sequence, $\mathrm{A}, \mathrm{A}+\mathrm{D}, \mathrm{A}+2 \mathrm{D}, \mathrm{A}+3 \mathrm{D} \ldots \ldots . . \mathrm{N}$ th term $=\mathrm{A}+(\mathrm{N}-1) \mathrm{D}$
and sum of N terms $=\frac{N}{2}[2 A+(N-1) D]$

Rules of Divisibility

These rules let you test if one number can be evenly divided by another, without having to do too much calculation!

(Divis ibility Conditions)		
A number is divisible by	If	Example
2	The last digit is even ($0,2,4,6,8 \ldots \ldots)$	128 is 129 is not
3	The sum of the digits is evenly/ completely divisible by 3	$381(3+8+1=12$, and $12 \div 3=4)$ Yes
		$217\left(2+1+7=10\right.$, and $\left.10 \div 3=3 \frac{1}{1} 3\right)$ No
4	The last 2 digits are evenly/ completelydivisible by 4	1312, $(12 \div 4=3)$ is 7019 is not
5	The last digit is 0 or 5	175 is 809 is not
6	The number is evenly / completely divisible by both 2 and 3	114 (it is even and $1+1+4=6$ and $6 \div 3=2$) Yes 308 (it is even but $3+0+8=11$ and $11 \div 3=3 \frac{2}{3}$) No
7	If you double the last digit and subtract it from the rest of the number and the answer is : 0 or divisible by 7 (Note : for bigger numbers you can apply this rule to the answer again if you want)	672 (Double 2 is $4,67-4=63$, and $63 \div 7=9$) Yes 905 (Double 5 is $10,90-10=80$, and $80 \div 7=113 / 7$) No
8	The last three digits are divisible by 8	$\begin{aligned} & 109816(816 \div 8=102) \text { Yes } \\ & 216302(302 \div 8=373 / 4) \mathbf{N o} \end{aligned}$
9	The sum of the digits is divisible by 9 (Note : for bigger numbers you can apply this rule to the answer again if you want)	$\begin{aligned} & 1629(1+6+2+9=18, \text { and again, } 1+8=9) \text { Yes } \\ & 2013(2+0+1+3=6) \text { No } \end{aligned}$
10	The number ends in 0	220 is 221 is not
11	If the difference of the sum of the digits at odd places and the sum of the digits at even places is $\mathbf{0}$ or divisible by 11	$\begin{aligned} & 1364((3+4)-(1+6)=\mathbf{0}) \text { Yes } \\ & 25176((5+7)-(2+1+6)=3) \text { No } \end{aligned}$
12	(i) The number is divisible by 3 and 4 both, or (ii) If you subtract the last digit from twice the rest of the number and the answer is: 0 or divisible by 12 (Note : for bigger numbers this can be applied repeatedly)	$648(6+4+8=18$ and $18 \div 3=6$, and $48 \div 4=12)$ Yes $916\left(9+1+6=16,16 \div 3=5 \frac{1}{3}\right)$ No

EXAMPLE $1:$ If an amount of $₹ 198011$ is distributed equally amongst 47 persons, how much amount would each person get ?
(a) ₹ 4123
(b) ₹ 4231
(c) ₹ 4213
(d) ₹ 4132
(e) None of these

Sol. (c) Sum received by each person $=₹\left(\frac{198011}{47}\right)=₹ 4213$
EXAMPLE 2 : A company canteen requires 798 bananas per week. Totally how many bananas will it require for the months of January, February and March, 2008 if the number of employees did not change during this period?
(a) 10480
(b) 10277
(c) 10586
(d) 10374
(e) None of these

Sol. (d) Number of days in the months of January, February and March in 2008
$=31+29+31=91$ days $=91 \div 7$ weeks $=13$ weeks
\because Consumption of bananas in 1 week $=798$
\therefore Consumption of bananas in 13 weeks

$$
=13 \times 798=10374
$$

EXAMPLE $3:$ The cost of 2 rings and 4 bangles is ₹ 46854 . What is the cost of 5 rings and 10 bangles?
(a) ₹ 115345
(b) ₹ 117135
(c) ₹ 116675
(d) Cannot be determined
(e) None of these

Sol. (b) Let the CP of 1 ring and 1 bangle be $₹ \mathrm{x}$ and $₹ \mathrm{y}$ respectively.

$$
\begin{aligned}
& 2 x+4 y=46854 \\
\Rightarrow & 2.5(2 x+4 y)=2.5 \times 46854 \\
\Rightarrow & 5 x+10 y=₹ 117135
\end{aligned}
$$

EXAMPLE \downarrow : If the sum of four consecutive even numbers is 228, which is the smallest of the numbers?
(a) 52
(b) 54
(c) 56
(d) 48
(e) None of these

Sol. (b) According to the question,
$x+x+2+x+4+x+6=228$
$\Rightarrow 4 x+12=228$

$$
\begin{aligned}
& \Rightarrow \quad 4 x=228-12=216 \\
& \therefore \quad x=\frac{216}{4}=54
\end{aligned}
$$

\therefore The smallest even number $=54$
EXAMPLE >5 : The difference between a two-digit number and the number obtained after interchanging the two digits of the two-digit number is 27 . The sum of the two digits of the two-digit number is 15 . What is the two-digit number?
(a) 87
(b) 96
(c) 69
(d) Cannot be determined
(e) None of these

Sol. (d) Let the two digit nubmer be $10 \mathrm{x}+\mathrm{y}$, where x is the first digit and y the second digit.

$$
\begin{align*}
& \therefore \quad(10 x+y)-(10 y+x)=27 \\
& \quad 9 x-9 y=27 \\
& \quad-y=3 \tag{a}\\
& \text { also } x+y=15 \tag{b}\\
& \therefore \quad x=9 \text { and } y=6 \\
& \therefore \quad \text { Required number is } 96 \text { or } 69
\end{align*}
$$

EXAMPLE 6 : Five bells begin to toll together at intervals of 9 seconds, 6 seconds, 4 seconds, 10 seconds and 8 seconds respectively. How many times will they toll together in the span of one hour (excluding the toll at the start)?
(a) 5
(b) 8
(c) 10
(d) Cannot be determined
(e) None of these

Sol. (c)

2	9,	6,	4,	10,	8
	9,	3,	2,	5,	4
	9,	3,	1,	5,	2
	3,	1,	1,	5,	2

$\therefore \quad \mathrm{LCM}=2 \times 2 \times 2 \times 3 \times 3 \times 5=360 \mathrm{sec}$.
$=\frac{1}{10}$ Hour.
The bells will toll together after an interval of $\frac{1}{10}$ hour.
\therefore they will toll together 10 times in $\frac{1}{10}$ hour.
EXAMPLE 7 : Samantha, Jessica and Roseline begin to jog around a circular stadium. They complete their one lap around the stadium in 84 seconds, 56 seconds and 63 seconds respectively. After how many seconds will they be together at the starting point?
(a) 336
(b) 504
(c) 252
(d) Cannot be determined
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

Sol. (b) LCM of 84, 56, 63

2	84,	56,	63,
2	42,	28,	63,
7	21,	14,	63,
3	3,	2	9
	1,	2,	3,

$\therefore 2 \times 2 \times 7 \times 3 \times 2 \times 3=504$
Hence, all three persons will be together at the starting point after 504 seconds.

EXAMPLE $8:$ If the fractions $\frac{2}{5}, \frac{3}{8}, \frac{4}{9}, \frac{5}{13}$ and $\frac{6}{11}$ are arranged in ascending order of their values, which one will be the fourth?
(a) $\frac{4}{9}$
(b) $\frac{5}{13}$
(c) $\frac{3}{8}$
(d) $\frac{2}{5}$
(e) None of these

Sol. (a) $\frac{2}{5}=0.4, \quad \frac{3}{8}=0.375$,
$\frac{4}{9}=0.44, \quad \frac{5}{13}=0.38$,
$\frac{6}{11}=0.54$
\therefore Ascending order is
$=\frac{3}{8}, \frac{5}{13}, \frac{2}{5}, \frac{4}{9}, \frac{6}{11}$
So the fourth one will be

EXAMPLE $9:$ Bhuvan has some hens and some cows. If the total number of animal-heads are 71 and the total number of feet are 228, how many hens does Bhuvan have?
(a) 43
(b) 32
(c) 24
(d) Cannot be determined
(e) None of these

Sol. (e) Let Bhuwan have x hens and y cows
According to the question,
$x+y=71$
$2 x+4 y=228$
Multiply equation (i) by 4 and subtract equation (ii) from it :
$4 x+4 y-2 x-4 y=284-228$
or, $2 \mathrm{x}=56$
or, $x=\frac{56}{2}=28$
Number of hens $=28$
EXAMPLE $10: \frac{1}{4}$ th of $\frac{2}{5}$ th of a number is 82 . What is the number?
(a) 410
(b) $\mathbf{8 2 0}$
(c) 420
(d) 220
(e) None of these

Sol. (b) Let the number be $=\mathrm{x}$
According to the question,
$x \times \frac{2}{5} \times \frac{1}{4}=82$
or, $x=\frac{82 \times 5 \times 4}{2}=820$

EXERCISE

1. What is 456 times 121 ?
(a) 56453
(b) 54167
(c) 55176
(d) 54155
(e) None of these
2. The product of two consecutive even numbers is 12768 . What is the greater number?
(a) 110
(b) 108
(c) 114
(d) 112
(e) None of these
3. An amount of ₹ 50176 is distributed equally amongst 32 persons. How much amount would each person get?
(a) ₹ 1,555
(b) ₹ 1,478
(c) ₹ 1,460
(d) ₹ 1,568
(e) None of these
4. If an amount of $₹ 1,72,850$ is equally distributed amongst 25 people, how much amount would each person get?
(a) ₹ 8912.50
(b) ₹ 8642.50
(c) ₹ 7130
(d) ₹ 6914
(e) None of these
5. The sum of four consecutive even numbers. A, B, C, and D is 180. What is the sum of the set of next four consecutive even numbers ?
(a) 214
(b) 212
(c) 196
(d) 204
(e) None of these
6. What is 786 times 964 ?
(a) 759276
(b) 749844
(c) 75416
(d) 757704
(e) None of these
7. The difference between a two-digit number and the number obtained by interchanging the two digits of the number is 18. The sum of the two digits of the number is 12 . What is the product of the two digits of the two digits number?
(a) 35
(b) 27
(c) 32
(d) Cannot be determined
(e) None of these
8. What is 783 times 869 ?
(a) 678689
(b) 678861
(c) 680427
(d) 681993
(e) None of these
9. There are 15 dozen candles in a box. If there are 39 such boxes. How many candles are there in all the boxes together?
(a) 7020
(b) 6660
(c) 6552
(d) 3510
(e) None of these
10. Monica, Veronica and Rachael begin to jog around a circular stadium. They complete their one lap in 48 seconds, 64 seconds and 72 seconds respectively. After how many seconds will they be together at the starting point?
(a) 336
(b) 252
(c) 576
(d) Cannot be determined
(e) None of these
11. The product of two consecutive odd numbers is 19043. Which is the smaller number?
(a) 137
(b) 131
(c) 133
(d) 129
(e) None of these
12. What is 131 times 333 ?
(a) 46323
(b) 43623
(c) 43290
(d) 44955
(e) None of these
13. The product of two successive numbers is 8556 . What is the smaller number?
(a) 89
(b) 94
(c) 90
(d) 92
(e) None of these
14. A canteen requires 112 kgs of wheat for one week. How many kgs of wheat will it require for 69 days?
(a) $1,204 \mathrm{kgs}$
(b) $1,401 \mathrm{kgs}$
(c) $1,104 \mathrm{kgs}$
(d) $1,014 \mathrm{kgs}$
(e) None of these
15. If an amount of Rs 41,910 is distributed equally amongst 22 persons, how much amount would each person get?
(a) ₹1905
(b) ₹2000
(c) ₹745
(d) ₹765
(e) None of these
16. The product of two consecutive even numbers is 4488 . Which is the smaller number?
(a) 62
(b) 71
(c) 66
(d) 65
(e) None of these
17. A canteen requires 21 dozen bananas for one week. How many dozen bananas will it require for 54 days?
(a) 162
(b) 1944
(c) 165
(d) 2052
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

18. If an amount of $₹ 72,128$ is distributed equally amongst 46 persons how much amount would each person get?
(a) ₹ 1555
(b) ₹ 1478
(c) ₹ 1460
(d) ₹1568
(e) None of these
19. What is 234 times 167 ?
(a) 42768
(b) 41184
(c) 40581
(d) 39078
(e) None of these
20. What is the least number to be added to 1500 to make it a perfect square?
(a) 20
(b) 21
(c) 22
(d) 23
(e) None of these
21. The sum of three consecutive integers is 39 . Which of the following is the largest among the three?
(a) 12
(b) 15
(c) 13
(d) 16
(e) None of these
22. How many pieces of 8.6 metres length cloth can be cut out of a length of 455.8 metres cloth?
(a) 43
(b) 48
(c) 55
(d) 53
(e) 62
23. The product of two successive numbers is 3192 . What is the smaller number?
(a) 59
(b) 58
(c) 57
(d) 56
(e) None of these
24. What is 184 times 156 ?
(a) 28704
(b) 29704
(c) 30604
(d) 27604
(e) None of these
25. If an amount of $₹ 15,487$ is divided equally among 76 students, approximately how much amount will each student get?
(a) ₹206
(b) ₹ 210
(c) ₹204
(d) ₹218
(e) ₹212
26. The product of two consecutive even numbers is 16128 . Which is the larger number?
(a) 132
(b) 128
(c) 124
(d) 126
(e) None of these
27. There are 12 dozen mangoes in a box. If there are 43 such boxes, how many mangoes are there in all the boxes together?
(a) 516
(b) 3096
(c) 6192
(d) 628
(e) None of these
28. What is 768 times 859 ?
(a) 656276
(b) 661248
(c) 658176
(d) 659712
(e) None of these
29. A canteen requires 13 dozen bananas per day. How many bananas will it require for 9 weeks?
(a) 728
(b) 9828
(c) 1404
(d) 9882
(e) None of these
30. The cost of 3 chairs and 10 tables is ₹ 9856 . What is the cost of 6 chairs and 20 tables?
(a) ₹17227
(b) ₹18712
(c) ₹19172
(d) Cannot be determined
(e) None of these
31. An amount of $₹ 123098$ is distributed equally amongst 61 persons. How much amount would each person get?
(a) ₹2018
(b) ₹ 2108
(c) ₹2258
(d) ₹2388
(e) None of these
32. The sum of a set of five consecutive even numbers is 140 . What is the sum of the next set of five consecutive even numbers?
(a) 190
(b) 180
(c) 200
(d) 160
(e) None of these
33. What is 963 times 788 ?
(a) 757268
(b) 759632
(c) 758056
(d) 758844
(e) None of these
34. The cost of 5 tables and 6 chairs is $₹ 2,884$. What is the cost of 15 tables and 18 chairs?
(a) ₹ 3300
(b) ₹7332
(c) ₹5600
(d) ₹8652
(e) None of these
35. $\frac{3}{5}$ of a number is 250 more than 40% of the same number. What is the number?
(a) 1250
(b) 1180
(c) 1200
(d) 1220
(e) none of these
36. The product of two consecutive odd numbers is 1763 . What is the larger number?
(a) 43
(b) 39
(c) 41
(d) 37
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

37. A canteen requires $4,560 \mathrm{kgs}$ of rice for 30 days. How many kgs , of rice does the canteen require for one week?
(a) 1078 kgs
(b) 944 kgs
(c) 1054 kgs
(d) 1068 kgs
(e) None of these
38. If an amount of $₹ 13,957$ is divided equally among 45 people, how much approximate amount will each person get?
(a) ₹330
(b) ₹250
(c) ₹275
(d) ₹310
(e) None of these
39. The product of two consecutive even numbers is 5328 . What is the smaller number?
(a) 70
(b) 68
(c) 74
(d) 72
(e) None of these
40. Three girls start jogging from the same point around a circular track and they complete one round in 24 seconds, 36 seconds and 48 seconds respectively. After how much time will they meet at one point?
(a) 2 minutes, 20 seconds
(b) 2 minutes, 24 seconds
(c) 4 minutes 12 seconds
(d) 3 minutes 36 seconds
(e) None of these
41. The average of four consecutive even numbers is 27 . What is the highest number?
(a) 32
(b) 28
(c) 30
(d) 34
(e) None of these
42. Three friends A, B and C start running around a circular stadium and complete a single round in 24,36 and 30 seconds respectively. After how many minutes will they meet again at the starting point?
(a) 12
(b) 6
(c) 8
(d) 15
(e) 18
43. If the fractions $\frac{1}{2}, \frac{2}{3}, \frac{5}{9}, \frac{6}{13}$, and $\frac{7}{9}$ are arranged in ascending order of their values, which one will be the fourth?
(a) $\frac{2}{3}$
(b) $\frac{6}{13}$
(c) $\frac{5}{9}$
(d) $\frac{7}{9}$
(e) None of these
44. If the following fractions $\frac{7}{8}, \frac{4}{5}, \frac{8}{14}, \frac{3}{5}$ and $\frac{5}{6}$ are arranged in descending order which will be the last in the series?
(a) $\frac{8}{14}$
(b) $\frac{7}{8}$
(c) $\frac{4}{5}$
(d) $\frac{3}{5}$
(e) $\frac{5}{6}$
45. If the fractions $\frac{2}{5}, \frac{3}{4}, \frac{4}{5}, \frac{5}{7}$ and $\frac{6}{11}$ are arranged in ascending order of their values, which one will be the fourth ?
(a) $\frac{2}{5}$
(b) $\frac{3}{4}$
(c) $\frac{4}{5}$
(d) $\frac{6}{11}$
(e) $\frac{5}{7}$
46. The difference between two numbers is 3 and the difference between their squares is 63 . Which is the larger number?
(a) 12
(b) 9
(c) 15
(d) Cannot be determined
(e) None of these
47. If the difference between a number and two fifths of the number is 30 , find the number.
(a) 50
(b) 75
(c) 57
(d) 60
(e) None of these
48. If among 54 students each contributes $₹ 60$, the amount to buy new books for the library can be collected. If 9 students drop out how much additional amount does each student have to pay?
(a) ₹ 18
(b) ₹ 10
(c) ₹ 12
(d) Cannot be determined
(e) None of these
49. If $(12)^{3}$ is subtracted from the square of a number the answer so obtained is 976 . What is the number?
(a) 58
(b) 56
(c) 54
(d) 52
(e) None of these
50. The cost of 5 chairs and 8 tables is ₹ 6,574 . What is the cost of 10 chairs and 16 tables?
(a) ₹ 15674
(b) ₹ 16435
(c) ₹ 13148
(d) Cannot be determined
(e) None of these
51. If $(56)^{2}$ is added to the square of a number, the answer so obtained is 4985 . What is the number?
(a) 52
(b) 43
(c) 65
(d) 39
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

52. The difference between a number and one fifth of it is 84 . What is the number?
(a) 95
(b) 100
(c) 105
(d) 108
(e) 112
53. Kishan has some hens and some cows. If the total number of animal heads are 59 and the total number of feet are 190, how many cows does Kishan have ?
(a) 36
(b) 32
(c) 23
(d) Cannot be determined
(e) None of these
54. Gopal has some hens and some goats. If the total number of animal heads are 43 and total number of feet are 142, how many hens does Gopal have?
(a) 28
(b) 21
(c) 15
(d) Cannot be determined
(e) None of these
55. The difference between a two-digit number and the number obtained by interchanging the two digits of the number is 9 . The sum of the digits of the number is 15 . What is the product of the two digits of the two-digit number?
(a) 54
(b) 72
(c) 56
(d) Cannot be determined
(e) None of these
56. The number obtained by interchanging the two digits of a two-digit number is less than the original number by 18 . The sum of the two digits of the number is 16 . What is the original number?
(a) 97
(b) 87
(c) 79
(d) Cannot be determined
(e) None of these
57. If all the fractions $\frac{3}{5}, \frac{1}{8}, \frac{8}{11}, \frac{4}{9}, \frac{2}{7}, \frac{5}{7}$ and $\frac{5}{12}$ are arranged in the descending order of their values, which one will be the third?
(a) $\frac{1}{8}$
(b) $\frac{4}{9}$
(c) $\frac{5}{12}$
(d) $\frac{8}{11}$
(e) None of these
58. Farah got married 8 years ago. Today her age is $1 \frac{2}{7}$ times her age at the time of her marriage. At present her daughter's age is one-sixth of her age. What was her daughter's age 3 years ago?
(a) 6 years
(b) 2 years
(c) 3 years
(d) Cannot be determined
(e) None of these
59. Swapnil, Aakash and Vinay begin to jog around a circular stadium. They complete one lap in 36 seconds, 48 seconds and 42 seconds respectively. After how many seconds will they be together at the starting point?s \backslash
(a) 504 seconds
(b) 940 seconds
(c) 1008 seconds
(d) 470 seconds
(e) None of these
60. A, B, C, D and E are five consecutive odd numbers The sum of A and C is 146 . What is the value of E ?
(a) 75
(b) 81
(c) 71
(d) 79
(e) None of these
61. The product of two consecutive even numbers is $\mathbf{5 8 2 1 6 8}$. Which is the smaller number?
(a) 760
(b) 762
(c) 764
(d) 766
(e) 756
62. Seema's present age is four times her son's present age and four-seventh of her father's present age. The average of the present ages of all three of them is 32 years. What is the difference between the Seema's son's present age and Seema's father's present age ?
(a) 44 years
(b) 48 years
(c) 46 years
(d) Cannot be determined
(e) None of these
63. The sum of five consecutive even numbers of set A is 280 . What is the sum of a different set B of five consecutive numbers whose lowest number is 71 less than double the lowest number of set A ?
(a) 182
(b) 165
(c) 172
(d) 175
(e) None of these
64. Deepak has some hens and some goats. If the total number of animal heads is 90 and the total number of animal feet is 248, what is the total number of goats Deepak has?
(a) 32
(b) 36
(c) 34
(d) Cannot be determined
(e) None of these
65. The sum of the two digits of a two digit number is 15 and the difference between the two digits of the two digit number is 3. What is the product of the two digits of the two-digit number?
(a) 56
(b) 63
(c) 42
(d) Cannot be determined
(e) None of these
66. The sum of the squares of two consecutive even numbers is 6500 . Which is the smaller number?
(a) 54
(b) 52
(c) 48
(d) 56
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

Answer Key

1	(c)	14	(c)	27	(c)	40	(b)	53	(a)
2	(c)	15	(a)	28	(d)	41	(c)	54	(c)
3	(d)	16	(c)	29	(b)	42	(b)	55	(c)
4	(d)	17	(a)	30	(e)	43	(a)	56	(a)
5	(b)	18	(d)	31	(a)	44	(a)	57	(e)
6	(d)	19	(d)	32	(a)	45	(b)	58	(c)
7	(a)	20	(b)	33	(d)	46	(a)	59	(c)
8	(c)	21	(e)	34	(d)	47	(a)	60	(d)
9	(a)	22	(d)	35	(a)	48	(c)	61	(b)
10	(c)	23	(d)	36	(a)	49	(d)	62	(b)
11	(a)	24	(a)	37	(e)	50	(c)	63	(d)
12	(b)	25	(c)	38	(d)	51	(b)	64	(c)
13	(d)	26	(b)	39	(d)	52	(c)	65	(e)
							66	(d)	

ANSWERS \& EXPLANATIONS

1. (c) $456 \times 121=55176$
2. (c) From the given alternatives,
$112 \times 114=12768$
$\therefore \quad$ Larger number $=114$
3. (d) Amount received by each person
$=₹ \frac{50176}{32}=1568$
4. (d) Amount received by each person
$=\frac{172850}{25}=₹ 6914$
5. (b) $\mathrm{A}+\mathrm{A}+2+\mathrm{A}+4+\mathrm{A}+6=180$

$$
\begin{aligned}
4 \mathrm{~A}+12 & =180 \\
\mathrm{~A} & =42 .
\end{aligned}
$$

\therefore Next four consecutive even numbers are $50+52+54+56=212$
6. (d) $786 \times 964=757704$.
7. (a) Let the two-digit number be $=10 x+y$, where $x>y$ According to the question,
$10 \mathrm{x}+\mathrm{y}-10 \mathrm{y}-\mathrm{x}=18$
or, $9 x-9 y=18$
or, $\quad 9(x-y)=18$
or, $\quad x-y=\frac{18}{9}=2$
and, $x+y=12$
From equations (i) and (ii)
$2 x=14 \Rightarrow x=\frac{14}{2}=7$

From equation (i)

$$
y=7-2=5
$$

$$
\text { Required product }=x y=7 \times 5=35
$$

(c) $783 \times 869=680427$
9. (a) Total number of candles $=15 \times 12 \times 39=7020$
10. (c) Required time $=\mathrm{LCM}$ of 48,64 and 72

2	48,	64,	72
2	24,	32,	36
2	12,	16,	18
2	6,	8,	9
3	3,	4,	9
	1,	4,	3

LCM $=2 \times 2 \times 2 \times 2 \times 3 \times 4 \times 3=576$ seconds.
11. (a) Out of the given alternatives,
$137 \times 139=19043$
$\therefore \quad$ Required smaller number $=137$
12. (b) $?=333 \times 131=43623$
13. (d) Let the numbers be x and $(x+1)$,
$\therefore x(x+1)=8556$
or, $x^{2}+x-8556=0$
or, $x^{2}+93 x-92 x-8556=0$
or, $\left(x^{2}+93\right)(x-92)=0$
$\therefore \quad x=92$

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

14. (c) Quantity of wheat for 7 days $=112 \mathrm{~kg}$
$\therefore \quad$ Quantity of wheat for 1 day $=\frac{112}{7} \mathrm{~kg}$
\therefore Quantity of wheat for 69 days
$=\frac{112}{7} \times 69=1104 \mathrm{~kg}$
15. (a) Required amount $=\frac{41910}{22}=₹ 1905$
16. (c) Let the smaller number be x
$\because \quad x \times(x+2)=4488$
$\Rightarrow x^{2}+2 x-4488=0$
$\Rightarrow(x+68)(x-66)=0$
$\therefore \quad x=66$
17. (a) Required number of bananas
$=\frac{21}{7} \times 54=162$ dozen
18. (d) Amount received by each person

$$
=\frac{72128}{46}=₹ 1568
$$

19. (d) $234 \times 167=39078$
20.

(b) $38^{2}=1444$
$39^{2}=1521$
\therefore Required number $=1521-1500=21$
21. (e) Let the three consecutive integers be $x, x+1$ and $x+2$

According to the question,
$x+x+1+x+2=39$
or, $3 x+3=39$
or, $3 x=39-3=36$
or, $\quad x=\frac{36}{3}=12$
\therefore Required largest number $=\mathrm{x}+2=12+2=14$
22. (d) Number of pieces $=\frac{455.8}{8.6}=53$
23. (d) Out of the given alternatives,
$56 \times 57=3192$
(a) Required product $=184 \times 156=28704$
25.
(c) Amount received by each student
$=\frac{15487}{76}=\approx ₹ 204$
26. (b) Quicker Approach:

The unit's digit of the number 16128 is 8 ,
From the given answer choices, $126 \times 128=16128$
\therefore Required larger number $=128$
27. (c) Number of mangoes $=12$ dozens

$$
=12 \times 12=144
$$

$\therefore \quad$ Number of mangoes in 43 boxes

$$
=43 \times 144=6192
$$

28. (d) Required product $=768 \times 859=659712$
29. (b) Requirement of bananas for 1 day in the canteen $=13$ dozens
\therefore Requirement of bananas for 9 weeks i.e. 63 days

$$
\begin{aligned}
& =63 \times 13 \text { dozens } \\
& =63 \times 13 \times 12=9828 .
\end{aligned}
$$

30. (e) Let the cost of one chair be $₹ x$ and that of a table be = ₹ y
According to the question,
$3 x+10 y=₹ 9856$
or, $2 \times(3 x+10 y)=2 \times 9856$
$6 x+20 y=₹ 19712$
31. (a) Amount received by each person
$=\frac{123098}{61}=₹ 2018$
32. (a) According to the question,
$\mathrm{x}+\mathrm{x}+2+\mathrm{x}+4+\mathrm{x}+6+\mathrm{x}+8=140$
or, $5 x+20=140$
or, $5 x=120$
$\therefore \quad \mathrm{x}=\frac{120}{5}=24$
$\therefore \quad \mathrm{x}+8=24+8=32$
The next set of five consecutive even number will start with $=34$
\therefore Required sum $=34+36+38+40+42=190$
33. (d) $963 \times 788=758844$
34. (d) Let the cost of a table be $=₹ x$ and that chair be $=₹ y$

According to the question,
$5 x+6 y=₹ 2884$
$\therefore \quad 3 \times 5 \mathrm{x}+3 \times 6 \mathrm{y}=3 \times ₹ 2884$
or, $15 \mathrm{x}+18 \mathrm{y}=\mathrm{F} 8652$
35. (a) Let the number be x

Then $\frac{3 x}{5}-\frac{2 x}{5}=250$
$\Rightarrow x=250 \times 5$

$$
=1250
$$

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

36. (a) From the given alternatives,
$1763=43 \times 41$
37. (e) Required quantity of rice $=\frac{4560 \times 7}{30} \mathrm{~kg}=1064 \mathrm{~kg}$
38. (d) amount received by each person
$=\frac{13957}{45}=₹ 310.15 \approx ₹ 310$
39. (d) Let the smaller number be x
$\because \quad \mathrm{x}(\mathrm{x}+2)=5358$
$\Rightarrow x^{2}+2 x-5328=0$
$\Rightarrow(\mathrm{x}+74)(\mathrm{x}-42)=0$
$\therefore \quad x=72$
40. (b) Required time
$=$ L.C.M of 24,36 and 48
$=144$ seconds
$=2$ minutes 24 seconds
41. (c) $\frac{x+x+2+x+4+x+6}{4}=27$
$\Rightarrow x=\frac{27 \times 4-12}{4}$

$$
=\frac{96}{4}=24
$$

$\therefore \quad$ Highest number $=24+6=30$
42. (b) Required time $=$ L.C.M of 24,36 and 30

$$
=360 \text { seconds }=6 \text { minutes }
$$

43. (a) The given fractions are $\frac{1}{2}, \frac{2}{3}, \frac{5}{9}, \frac{6}{13}$ and $\frac{7}{9}$

LCM of their denominators is 234
$\therefore \frac{117,78,26,18,26}{234}$
$\underline{117,2 \times 78,5 \times 26,6 \times 18,7 \times 26}$
$\frac{117,156,130,108,182}{234}$
On arranging the numerators in ascending order 108, 117, 130, 156, 182.
\therefore Ascending order of the fraction is
$\frac{6}{13}<\frac{1}{2}<\frac{5}{9}<\frac{2}{3}<\frac{7}{9}$
44. (a) Decimal equivalents of fractions
$\frac{7}{8}=0.875, \frac{4}{5}=0.8$
$\frac{8}{14}=0.57, \frac{3}{5}=0.6$
$\frac{5}{6}=0.83$
$\therefore 0.875>0.83>0.8>0.6>0.57$
$\therefore \quad \frac{7}{8}>\frac{5}{6}>\frac{4}{5}>\frac{3}{5}>\frac{8}{14}$
45. (b) Decimal equivalent of given fractions:
$\frac{2}{5}=0.4 ; \quad \frac{3}{4}=0.75 ; \quad \frac{4}{5}=0.8 ;$
$\frac{5}{7}=0.714 ; \quad \frac{6}{11}=0.545$
Clearely, $0.4<0.545<0.714<0.75<0.8$
$\therefore \quad \frac{2}{5}<\frac{6}{11}<\frac{5}{7}<\frac{3}{4}<\frac{4}{5}$
46. (a) Let the larger and smaller numbers be x and y respectively.
Then, $x-y=3$
and, $x^{2}-y^{2}=63$
$\Rightarrow(x+y)(x-y)=63$
$\Rightarrow(x+y)=\frac{63}{3}=21$
From equation (i) and (ii),

$$
x=12
$$

47. (a) Let the number be $=x$

According to the question,
$x-\frac{2 x}{5}=30$
$\Rightarrow \frac{3 x}{5}=30$
$\Rightarrow \quad x=\frac{30 \times 5}{3}=50$
48. (c) Sum to be collected from 54 students $=60 \times 54=3240$ ₹

Sum collected from 45 students $=60 \times 45=2700 ₹$
Difference $=3240-2700=540 ₹$
\therefore Additional amount to be paid by each student

$$
=\frac{540}{45}=₹ 12
$$

49. (d) Let the number be x.
$\because x^{2}-(12)^{3}=976$
$\therefore \quad x^{2}=976+1728=2704$
$\therefore \quad \mathrm{x}=\sqrt{2704}=52$
50. (c) $\because 5$ chairs +8 tables $=₹ 6574$
$\therefore \quad 10$ chairs +16 tables $=6574 \times 2=₹ 13148$
51. (b) Let the number be x.
$\because \quad x^{2}+(56)^{2}=4985$
$\Rightarrow x^{2}=4985-3136=1849$
$\therefore x=\sqrt{1849}=43$

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

52. (c) $\left(1-\frac{1}{5}\right)$ of the number $=84$
$\therefore \quad$ number $=\left(\frac{84 \times 5}{4}\right)=105$
53. (a) A hen has two legs whereas a cow has four legs. But both of them have one head each.
Let Kishan have x cows
$\therefore \quad$ Number of hens $=59-\mathrm{x}$.
According to the question,

$$
4 \times x+(59-x) \times 2=190
$$

or, $4 \mathrm{x}+118-2 \mathrm{x}=190$
or, $2 x=190-118=72$
$\therefore \quad \mathrm{x}=\frac{72}{2}=36$
Number of cows $=36$
54. (c) Let the number of hens $=x$
$\therefore \quad$ Number of goats $=43-\mathrm{x}$
According to the question,
$x \times 2+(43-x) \times 4=142$
or, $2 \mathrm{x}+172-4 \mathrm{x}=142$
or, $2 \mathrm{x}=172-142$
$\therefore \quad \mathrm{x}=\frac{30}{2}=15$
$\therefore \quad$ Number ofhens $=15$
55. (c) Let the two-digit number be $=10 \mathrm{x}+\mathrm{y}$, where $\mathrm{x}<\mathrm{y}$.
Number obtained after interchanging the digits $=10 \mathrm{y}+\mathrm{x}$
According to the question,
$10 y+x-10 x-y=9$
or, $9 y-9 x=9$
or, $9(y-x)=9$
or, $y-x=1$
and $x+y=15$
From equations (i) and (ii),
$\mathrm{y}=8$ and $\mathrm{x}=7$
\therefore Required product $=8 \times 7=56$
56. (a) Let the number be $(10 x+y)$

Then, $(10 x+y)-(10 y+x)=18$
$\Rightarrow 9 x-9 y=18$
$\Rightarrow \quad x-y=2$
and, $x+y=16$
$\mathrm{x}=9, \mathrm{y}=7$
From equations (i) and (ii),
So, the number is $(10 \times 9+7)=97$
57. (e) $\frac{3}{5}=0.6, \frac{1}{8}=0.125$,
$\frac{8}{11}=0.727, \frac{4}{9}=0.44$,
$\frac{2}{7}=0.285, \frac{5}{7}=0.714$,
$\frac{5}{12}=0.416$
Descending order :
$\frac{8}{11}, \frac{5}{7}, \frac{3}{5}, \frac{4}{9}, \frac{5}{12}, \frac{2}{7}, \frac{1}{8}$
So, $\frac{3}{5}$ is the third.
58. (c) Let Farah's age at the time of her marriage be x.

Then, $(x+8)=x \times \frac{9}{7}$
$\Rightarrow \frac{9 x}{7}-x=8$
$\Rightarrow \mathrm{x}=\frac{8 \times 7}{2}=28$ years
Farah's present age $=28+8=36$ years
$\therefore \quad$ Daughter's age 3 years ago $=36 \times \frac{1}{6}-3$
$=3$ years
59. (c) They will be together at the starting point after the L.C.M of 36,48 and 42
L.C.M. of $36,48,42=1008$ seconds
60. (d) $\mathrm{A}+\mathrm{C}=146$
or $\mathrm{A}+\mathrm{A}+4=146$
or $\mathrm{A} \quad=\frac{146-4}{2}=71$
$\therefore \quad \mathrm{E}=\mathrm{A}+8=71+8=79$
61. (b) Let the numbers be x and $(x+2)$

Then, $x \times(x+2)=582168$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}-582168=0$
$\Rightarrow \mathrm{x}^{2}+764 \mathrm{x}-762 \mathrm{x}-582168=0$
$\Rightarrow(\mathrm{x}+764)(\mathrm{x}-762)=0$
$\Rightarrow \mathrm{x}=762$
62. (b) Let Seema's present age be x years.

Then, Seema's son's present age $=\frac{x}{4}$ years
Seema's father's present age $=\frac{7 x}{4}$ years.
Then, $x+\frac{x}{4}+\frac{7 x}{4}=32 \times 3$

To Enroll for Complete Printed Study Material:- https://www.mentogate.com/course/gate-geology-study-material
KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching
$\Rightarrow 12 \mathrm{x}=96 \times 4$
$\Rightarrow \mathrm{x}=\frac{96 \times 4}{12}=32$
\therefore Required difference $=\frac{7 \times 32}{4}-\frac{32}{4}$

$$
=56-8=48 \text { years }
$$

63. (d) Lowest number of set $\mathrm{A}=\frac{280}{5}-4=52$

Lowest number of other set $=52 \times 2-71=33$
$\therefore \quad$ Required sum $=33+34+35+36+37=175$
64. (c) Let total number of goats be x.

Then, total number of hens $=(90-x)$
So, $x \times 4+(90-x) \times 2=248$
$\Rightarrow 4 \mathrm{x}-2 \mathrm{x}=248-180$

$$
x=\frac{68}{2}=34
$$

65. (e) Let the two digits be x and y .

Then, $\begin{aligned} x+y & =15 \\ x-y & =3\end{aligned}$
from equation (i) and (ii), $x=9, y=6$
\therefore Product $=9 \times 6=54$
66. (d) Let the two numbers be x and $(x+2)$.

Then, $x^{2}+(x+2)^{2}=6500$
$\Rightarrow \mathrm{x}^{2}+\mathrm{x}^{2}+4 \mathrm{x}+4=6500$
$\Rightarrow 2 x^{2}+4 x-6496=0$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}-3248=0$
$\Rightarrow \mathrm{x}^{2}+58 \mathrm{x}-56 \mathrm{x}-3248=0$
$\Rightarrow(\mathrm{x}+58)(\mathrm{x}-56)=0$
$\Rightarrow \mathrm{x}=56$

CHAPTER

2

SIMPLIFICATION

SIMPLIFICATION

Algebraic expressions contain alphabetic symbols as well as numbers. When an algebraic expression is simplified, an equivalent expression is found that is simpler than the original. This usually means that the simplified expression is smaller than the original.

BODMAS RULE :

This rule depicts the correct sequence in which the operations are to be executed, so as to find out the value of a given expression. Here, 'B' stands for 'Bracket', ' O' for 'of', ' D' for 'Division, ' M' for 'Multiplication', 'A' for 'Addition', ' S ' for 'Subtraction'.
When an expression contains a vinculum (a horizontal line above an expression), before applying the 'BODMAS' rule, we simplify the expression under the vinculum.
The next step is to evaluate all the expressions in the brackets. After removing the brackets, we must use the following operations strictly in the following order:

1. of
2. Division, Multiplication
3. Addtition, Subtraction

So, the order of precedence is:
V Vinculum first
B Brackets
O Of, Orders (i.e. Powers and Square Roots, etc.)
DM Division and Multiplication (left-to-right)
AS Addition and Subtraction (left-to-right)

LAWS OF SURDS AND INDICES

LAWS OF SURDS:

* $\left(a^{\frac{1}{n}}\right)^{n}=a$
* $\quad a^{\frac{1}{n}} b^{\frac{1}{n}}=(a b)^{\frac{1}{n}}$
- $\left(a^{\frac{1}{n}}\right)^{\frac{1}{m}}=a^{\frac{1}{m n}}$

All these laws follow from the laws of indices.

TYPES OF SURDS

Mixed surds: If one factor of a surd is a rational number and the other factor is an irrational number, then the surd is called a mixed surd.

Example: $2 \sqrt{5},-2 \sqrt{3}$
Pure surds: If a surd has unity as its only rational factor, the other factor being an irrational number, then it is called a pure surd.

Examples: $\sqrt{3}, \sqrt{a}$
Since surds are irrational numbers, they can be added or subtracted as real numbers. Also a rational number can be added or subtracted from a surd. The result will be a real number.

Examples: $\sqrt{5}+3 ; 2-\sqrt{7} ; \sqrt{3}-2$

ADDITION AND SUBTRACTION OF SURDS:

Example: $5 \sqrt{2}+20 \sqrt{2}-3 \sqrt{2}=22 \sqrt{2}$
Example: $\sqrt{45}-3 \sqrt{20}+4 \sqrt{5}=3 \sqrt{5}-6 \sqrt{5}+4 \sqrt{5}=\sqrt{5}$

Multiplying and Dividing Surds :

Surds can be multiplied by using the laws of surds. To multiply or divide Surds they have to first be made of the same order.

Examples: $\sqrt{4} \times \sqrt{22}=\sqrt{88}, \sqrt{162} / \sqrt{9}=3 \sqrt{2}$

LAWS OF INDICES :

* $\quad a^{\mathrm{m}} \times a^{\mathrm{n}}=a^{\mathrm{m}+\mathrm{n}}$
* $\quad a^{\mathrm{m}} \div a^{\mathrm{n}}=a^{\mathrm{m}-\mathrm{n}}$
* $\quad\left(a^{\mathrm{m}}\right)^{\mathrm{n}}=a^{\mathrm{mn}}$
* $a^{\frac{1}{m}}=\sqrt[m]{a}$
* $\quad a^{-\mathrm{m}}=\frac{1}{a^{m}}$
* $\quad a^{m / n}=\sqrt[n]{a^{m}}$
* $\quad a^{0}=1$

Examples:

$$
\begin{aligned}
& \sqrt[5]{4^{3}}=\left(4^{3}\right)^{\frac{1}{5}}=\left(4^{\frac{3}{5}}\right) \\
& 5^{3} \times 5^{4}=5^{7} \\
& \frac{5^{5}}{5^{2}}=5^{3}
\end{aligned}
$$

Other Important Formulas

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& \left(a^{2}-b^{2}\right)=(a-b)(a+b) \\
& (a+b)^{2}=(a-b)^{2}+4 a b \\
& (a-b)^{3}=a^{3}-b^{3}-3 a b(a-b) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a \\
& x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right)
\end{aligned}
$$

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

$$
(a+b)^{2}+(a-b)^{2}=2\left(a^{2}+b^{2}\right)
$$

$$
(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)
$$

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

$$
a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-a c\right)
$$

$$
x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2=\left(x-\frac{1}{x}\right)^{2}+2
$$

SOLVED EXAMPLES

EXAMPLE 1 : What value should come in place of the question mark (?) in the following question?
$432 \times 66-1562=$?
(a) 23450
(b) 24360
(c) 25890
(d) 26950
(e) None of these

Sol. (d) ? $=432 \times 66-1562$

$$
=28512-1562=26950
$$

EXAMPLE 2 : What value should come in place of the question mark (?) in the following question ?

$$
44^{3} \times 16^{3}-18678^{2}=?
$$

(a) 45980
(b) 44890
(c) 43780
(d) 42670
(e) None of these

Sol. (a) ? $=44^{3} \times 16^{3}-18678^{2}$

$$
=348913664-348867684
$$

$$
=45980
$$

EXAMPLE 3 : What value should come in place of the question mark (?) in the following question?

$$
6 \frac{2}{3} \div 4 \frac{4}{5}=?
$$

(a) $1 \frac{1}{3}$
(b) $1 \frac{7}{18}$
(c) $1 \frac{12}{19}$
(d) $1 \frac{5}{8}$
(e) None of these

Sol. (b)

$$
\begin{aligned}
& ?=\frac{20}{3} \div \frac{24}{5} \\
& =\frac{20}{3} \times \frac{5}{24}=\frac{25}{18}=1 \frac{7}{18}
\end{aligned}
$$

EXAMPLE >4 : What value should come in place of the question mark (?) in the following question ?

$$
\frac{3}{8} \text { of } \frac{5}{7} \text { of } \frac{2}{5} \text { of } 1680=?
$$

(a) 150
(b) 180
(c) 210
(d) 240
(e) None of these

Sol. (b) $?=1680 \times \frac{2}{5} \times \frac{5}{7} \times \frac{3}{8}=180$
EXAMPLE 5 : If $(28)^{3}$ is subtracted from the square of a number, the answer so obtained is 1457 . What is the number?
(a) 127
(b) 136
(c) 142
(d) 153
(e) None of these

Sol. (d) Let the number be x .
According to the question,
$\mathrm{x}^{2}-(28)^{3}=1457$
$\Rightarrow x^{2}-21952=1457$
$\Rightarrow \mathrm{x}^{2}-21952-1457=0$
$\Rightarrow x^{2}=23409$
$\Rightarrow \mathrm{x}=\sqrt{23409}=153$
EXAMPLE $6:$ If (89) ${ }^{\mathbf{2}}$ is added to the square of a number, the answer so obtained is $\mathbf{1 6 2 0 2}$. What is the number?
(a) 91
(b) 8281
(c) 8649
(d) 93
(e) None of these

Sol. (a) Let the number be x .
According to the question,
$x^{2}+(89)^{2}=16202$

$$
\begin{aligned}
& \Rightarrow x^{2}+7921=16202 \\
& \Rightarrow x^{2}=16202-7921=8281 \\
& \Rightarrow x=\sqrt{8281}=91
\end{aligned}
$$

EXAMPLE $7: \frac{4 \times 2+6}{5 \times 16-2}=$?
(a) 5
(b) $\frac{16}{35}$
(c) $\frac{1}{5}$
(d) $\frac{16}{39}$
(e) None of these

Sol. (e) $?=\frac{4 \times 2+6}{5 \times 16-2}=\frac{8+6}{80-2}=\frac{14}{78}=\frac{7}{39}$
EXAMPLE $8:$ If (41) ${ }^{\mathbf{2}}$ is added to the square of a number, the answer so obtained is 7457. What is the number ?
(a) 76
(b) 63
(c) 81
(d) 82
(e) None of these

Sol. (a) Required number

$$
\begin{aligned}
& =\sqrt{7457-(41)^{2}} \\
& =\sqrt{7457-1681} \\
& =\sqrt{5776}=76
\end{aligned}
$$

EXAMPLE >9 : What approximate value should come in place of question mark (?) in the following questions?
(you are not expected to calculate the exact value)

$$
(935.82)^{2}=\text { ? }
$$

(a) $\mathbf{8 7 0 0 0 0}$
(b) 867500
(c) 888800
(d) $\mathbf{8 7 5 8 0 0}$
(e) $\mathbf{8 9 9 8 0 0}$

Sol. (d) $?=(935.82)^{2} \approx(936)^{2}$

$$
\approx 936 \times 936=876096 \approx 875800
$$

EXAMPLE 10 : What approximate value should come in place of the question mark (?) in the following question?

$$
4444 \div 56 \times(23)^{2}+63=?
$$

(a) $\mathbf{4 5 6 7 0}$
(b) 46290
(c) 44630
(d) 43530
(e) 42050

Sol. (e) $?=\left(\frac{4444 \times 23 \times 23}{56}\right)+63$
$\approx\left(\frac{4450 \times 23 \times 23}{56}\right)+63$
$\approx 42037+63=42100 \approx 42050$

EXERCISE

Directions: In the following find the value of '?'

1. $56.6 \times 16.6 \times 6.6=$?
(a) 6102.196
(b) 6021.196
(c) 6210.196
(d) 6012.196
(e) None of these
2. $? \div 46 \times 16=368$
(a) 1124
(b) 1236
(c) 1058
(d) 966
(e) None of these
3. $999.99+99.99+9.99=$?
(a) 1109.99
(b) 1019.89
(c) 1108.99
(d) 1099.88
(e) none of these
4. $11.6 \times ?=899$
(a) 77.5
(b) 78.5
(c) 79.5
(d) 81.5
(e) none of these
5. $85332-11638-60994=$?
(a) 12700
(b) 12600
(c) 12800
(d) 12500
(e) None of these
6. $?$ of 57.75 of $0.8=3187.8$
(a) 45
(b) 27
(c) 64
(d) 69
(e) None of these
7. $(?)^{2}-(12)^{3}=976$
(a) 58
(b) 56
(c) 54
(d) 52
(e) None of these
8. $351 \div 6 \div 0.5=$?
(a) 117
(b) 119
(c) 121
(d) 123
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

9. $18 \times ?=7776 \div 12$
(a) 32
(b) 42
(c) 160
(d) 36
(e) None of these
10. $11 \times 55 \div 5+9=$?
(a) 120
(b) 140
(c) 48
(d) 180
(e) None of these
11. $85333-11638-60994=$?
(a) 12701
(b) 12600
(c) 12800
(d) 12500
(e) None of these
12. $8^{4}-8^{2}=$?
(a) 64
(b) 512
(c) 4032
(d) 4096
(e) None of these
13. $6.3 \times 12.8 \times 9.9-69.996=$?
(a) 738.54
(b) 758.94
(c) 728.34
(d) 748.74
(e) None of these
14. $8+18 \times 368 \div 16=$?
(a) 598
(b) 356
(c) 648
(d) 422
(e) None of these
15. $11059+8889-908=? \times 85$
(a) 236
(b) 212
(c) 248
(d) 272
(e) None of these
16. $66606+40998=?-24848$
(a) 132452
(b) 132242
(c) 132425
(d) 132254
(e) None of these
17. $894.65-388.24+100.99=$?
(a) 617.4
(b) 607.4
(c) 597.4
(d) 587.4
(e) None of these
18. $1181+1520=(26)^{2}+(?)^{2}$
(a) 49
(b) 43
(c) 47
(d) 45
(e) None of these
19. $59475 \div \sqrt{?}=195 \times 5$
(a) 3969
(b) 3481
(c) 4225
(d) 3249
(e) None of these
20. $\sqrt{?}+29=\sqrt{2704}$
(a) 23
(b) 529
(c) 441
(d) 21
(e) None of these
21. What is the least number to be added to 1500 to make it a perfect square?
(a) 21
(b) 35
(c) 43
(d) 59
(e) None of these
22. $-\frac{4}{5}$ of $1150+\frac{5}{6}$ of $1248=$?
(a) 140
(b) 115
(c) 125
(d) 120
(e) None of these
23. $235+75 \times 8=$?
(a) 2480
(b) 835
(c) 1955
(d) 2840
(e) none of these
24. $5986-2340=1496$
(a) 2150
(b) 1150
(c) 2140
(d) 1970
(e) none of these
25. $7^{\frac{1}{4}} \times(343)^{0.25}=$?
(a) $\sqrt{7}$
(b) 49
(c)
(d) $7 \sqrt{7}$
(e) None of these
26. $57.63-37.26=39.27-$?
(a) 18.90
(b) 18.54
(c) 19.73
(d) 19.54
(e) None of these
27. $\sqrt{1089}+\sqrt{289}=\sqrt{?}$?
(a) 625
(b) 50
(c) 25
(d) 1378
(e) None of these
28. $12.8 \times 2.5+8.6=$?
(a) 41.3
(b) 39.6
(c) 40.6
(d) 142.08
(e) None of these
29. $\left(14^{2}-13^{2}\right) \div 3=?^{2}$
(a) 9
(b) 3
(c) 27
(d) 6
(e) None of these
30. $(19)^{12} \times(19)^{8} \div(19)^{4}=(19)^{?}$
(a) 24
(b) 8
(c) 6
(d) 12
(e) None of these
31. $70.56 \div 11.2=$?
(a) 63
(b) 6.3
(c) 7.72
(d) 0.53
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

32. If $x+y=23$ and $x y=126$; then $(x)^{2}+(y)^{2}=$?
(a) 250
(b) 317
(c) 340
(d) Cannot be determined
(e) None of these
33. $986.23+7.952+8176.158=$?
(a) 9170.340
(b) 9169.230
(c) 9241.908
(d) 9170.762
(e) None of these
34. $\sqrt{1296} \div \sqrt{36}=$?
(a) 1
(b) 36
(c) 6
(d) 18
(e) None of these
35. $112 \div 7 \div 4=8 \times$?
(a) 0.25
(b) 0.05
(c) 0.5
(d) 8
(e) None of these
36. $\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{4}{8}$ of $3750=$?
(a) 625
(b) 312.5
(c) 125
(d) 250
(e) None of these
37. $\frac{3 \times 8+4}{9 \times 15-9}=$?
(a) $\frac{16}{9}$
(b) $\frac{2}{3}$
(c) $\frac{4}{9}$
(d) $\frac{3}{2}$
(e) None of these
38. $(87324-79576) \times 1.5=$?
(a) 1162.2
(b) 11622
(c) 1372.2
(d) 1163.7
(e) None of these
39. $(331+19) \times(15-11) \times(37+13)=$?
(a) 70000
(b) 4131
(c) 30250
(d) 20350
(e) None of these
40. $\quad 11.88 \times \frac{250}{18}=$?
(a) 16.50
(b) 4131
(c) 30250
(d) 20350
(e) None of these
41. $\frac{1}{2} \times \frac{3}{4} \div\left(\frac{9}{2} \times \frac{5}{8}\right)=$?
(a) $\frac{5}{96}$
(b) $\frac{15}{8}$
(c) $\frac{5}{108}$
(d) $\frac{12}{5}$
(e) None of these
42. $\frac{18+17 \times 3-1}{8-15 \div 3-1}=$?
(a) 17
(b) 26
(c) 13
(d) 34
(e) None of these
43. $1 \frac{1}{2}+1 \frac{2}{3} \div\left(\frac{6}{7}-\frac{5}{6}\right)=$?
(a) 71.5
(b) 133
(c) $\frac{19}{252}$
(d) $\frac{19}{180}$
(e) None of these
44. $\sqrt{?}-63=9^{2}$
(a) 12
(b) 144
(c) 324
(d) 128
(e) None of these
45. $916.28-72.4=728.2+$?
(a) 115.86
(b) 125.68
(c) 215.68
(d) 216.04
(e) None of these
46. $7776 \div 18 \times 3=$?
(a) 144
(b) 1926
(c) 1296
(d) 1266
(e) None of these
47. $8994-4178-2094=$?
(a) 2720
(b) 2726
(c) 2730
(d) 2734
(e) None of these
48. $315 \times 114-1565=$?
(a) 34534
(b) 34435
(c) 34345
(d) 33445
(e) None of these
49. $1256 \div(32 \times 0.25)=$?
(a) 160
(b) 154
(c) 165
(d) 157
(e) None of these
50. $69.2 \times 18.4 \times 4.5=$?
(a) 5729.76
(b) 5972.76
(c) 5279.76
(d) 5792.76
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

51. $3.2 \times 6.8 \times 9.5=$?
(a) 207.62
(b) 202.67
(c) 206.27
(d) 207.72
(e) None of these
52. $15^{3} \times 9^{3}-1555^{2}=$?
(a) 41250
(b) 43250
(c) 42350
(d) 44250
(e) None of these
53. $8 \frac{2}{5} \div 10 \frac{2}{25}=$?
(a) $\frac{5}{6}$
(b) $\frac{7}{8}$
(c) $\frac{4}{5}$
(d) $\frac{3}{4}$
(e) None of these
54. $\frac{3}{5}$ of $\frac{3}{4}$ of $\frac{5}{6}$ of $992=$?
(a) 388
(b) 390
(c) 372
(d) 376
(e) None of these
55. $\sqrt{?}+17=\sqrt{961}$
(a) 169
(b) 256
(c) 225
(d) 196
(e) None of these
56. $123 \div 6 \div 0.8=$?
(a) 25.625
(b) 23.545
(c) 27.455
(d) 21.365
(e) None of these

Choose the correct option.

57. What is the least number to be added to 3986 to make it a perfect square ?
(a) 118
(b) 95
(c) 110
(d) 100
(e) None of these
58. $\sqrt{3781} \times 5.36 \approx$?
(a) 350
(b) 330
(c) 240
(d) 280
(e) 410
59. If $(26)^{2}$ is subtracted from square of a number, the answer so obtained is 549 . What is the number?
(a) 35
(b) 33
(c) 29
(d) 41
(e) None of these
60. $\left[(4)^{3} \times(5)^{4}\right] \div(4)^{5}=$?
(a) 30.0925
(b) 39.0625
(c) 35.6015
(d) 29.0825
(e) None of these
61. $\frac{1.6 \times 3.2}{0.08}=$?
(a) 6.4
(b) 8
(c) 64
(d) 0.8
(e) None of these
62. $(7857+3596+4123) \div 96=$?
(a) 155.06
(b) 162.25
(c) 151.83
(d) 165.70
(e) None of these
63. $5321 \div 305 \times(19)^{2} \simeq$?
(a) 6150
(b) 6425
(c) 6380
(d) 6355
(e) 6300
64. If $(61)^{2}$ is added to the square of a number, the answer so obtained is 5242 . What is the number?
(a) 40
(b) 39
(c) 37
(d) 43
(e) None of these
65. What is the least number to be added to 4400 to make it a perfect square?
(a) 87
(b) 91
(c) 93
(d) 89
(e) None of these
66. The difference between two numbers is 3 and the difference of their squares is 63 . Find the greater number.
(a) 12
(b) 9
(c) 15
(d) Cannot be determined
(e) None of these
67. How much less is $\frac{4}{5}$ of 1150 from $\frac{5}{6}$ of 1248 ?
(a) 140
(b) 115
(c) 125
(d) 120
(e) None of these
68. If $(74)^{2}$ is subtracted from the square of a number, the answer so obtained is 5340 . What is the number?
(a) 98
(b) 102
(c) 104
(d) 110
(e) None of these
69. If $2 x+3 y=78$ and $3 x+2 y=72$, what is the value of $x+y$?
(a) 36
(b) 32
(c) 30
(d) Cannot be determined
(e) None of these
70. $741560+935416+1143+17364=$?
(a) 1694583
(b) 1695438
(c) 1695483
(d) 1659483
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

71. $(84)^{2} \div \sqrt{?}=168$
(a) 1936
(b) 1521
(c) 1681
(d) 1764
(e) None of these
72. $514789-317463-87695-11207=$?
(a) 96584
(b) 98242
(c) 96845
(d) 98424
(e) None of these
73. $\sqrt[3]{50653}=$?
(a) 39
(b) 43
(c) 33
(d) 41
(e) None of these
74. $(17891+16239-26352) \times ?=93336$
(a) 12
(b) 15
(c) 18
(d) 8
(e) None of these
75. $\frac{1}{4} \times 6624 \times \frac{1}{6} \times 12=$?
(a) 3312
(b) 3864
(c) 2208
(d) 4416
(e) None of these
76. $\frac{18 \times 15-50}{(40 \times 80) \div 160}=$?
(a) 20
(b) 8.5
(c) 11.5
(d) 22
(e) None of these
77. $\sqrt{?} \times \sqrt{1681}=2296$
(a) 2196
(b) 3364
(c) 2809
(d) 3025
(e) None of these
78. If $(74)^{2}$ is subtracted from the square of a number, the answer so obtained is 3740 . What is the number?
(a) 9216
(b) 98
(c) 9604
(d) 96
(e) None of these
79. $93 \times 45 \div 25=$?
(a) 167.4
(b) 837
(c) 279
(d) 130.2
(e) None of these
80. $0.08 \times ? \times 1.6=0.2944$
(a) 1.3
(b) 0.4
(c) 0.2
(d) 2.3
(e) None of these
81. $6 \times 66 \times 666=$?
(a) 263736
(b) 267336
(c) 263763
(d) 263376
(e) None of these
82. $5 \frac{1}{7} \times 8 \frac{1}{6} \div 7 \frac{7}{8}=$?
(a) $1 \frac{7}{9}$
(b) $1 \frac{7}{8}$
(c) $5 \frac{1}{3}$
(d) $5 \frac{2}{3}$
(e) None of these
83. $(7)^{3} \div \sqrt{?}+7=14$
(a) 49
(b) 1764
(c) 441
(d) 3136
(e) None of these
84. $\sqrt[3]{12167} \times ?=1035$
(a) 35
(b) 25
(c) 55
(d) 15
(e) None of these
85. $1256 \times 3892=$?
(a) 4883582
(b) 4888352
(c) 4888532
(d) 4883852
(e) None of these
86. $0.08 \times 0.5+0.9=$?
(a) 1.3
(b) 0.94
(c) 0.112
(d) 1.5
(e) None of these
87. $8195 \div 745+? \times 12=7847$
(a) 648
(b) 593
(c) 601
(d) 653
(e) None of these
88. $4123 \div(2.3)^{2}-446=$?
(a) 401
(b) 441
(c) 301
(d) 333
(e) 386
89. If $x+y=18$ and $x y=72$, what is the value of $(x)^{2}+(y)^{2}$?
(a) 120
(b) 90
(c) 180
(d) Cannot be determined
(e) None of these
90. Which least number should be added to 8115 to make it a perfect square?
(a) 349
(b) 166
(c) 144
(d) 194
(e) None of these
91. If $(46)^{2}$ is subtracted from the square of a number, the answer so obtained is 485 . What is the number?
(a) 4
(b) 51
(c) 56
(d) 53
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

92. $666 \div(2.4 \times ?)=185$
(a) 1.5
(b) 2.5
(c) 0.5
(d) 5
(e) None of these
93. $956 \times 753=$?
(a) 723692
(b) 727398
(c) 710308
(d) 719868
(e) None of these
94. $\frac{3}{8} \times \frac{4}{7} \times ?=5376$
(a) 30912
(b) 25144
(c) 24808
(d) 25088
(e) None of these
95. $\left[(9)^{3} \times(?)^{2}\right] \div 21=1701$
(a) 6
(b) 3
(c) 11
(d) 4
(e) None of these
96. $897214-336-46521-1249-632176=$?
(a) 217832
(b) 216725
(c) 216932
(d) 315950
(e) None of these
97. $\sqrt{11881} \times \sqrt{?}=10137$
(a) 8649
(b) 9216
(c) 8281
(d) 9409
(e) None of these
98. $3.5 \times 2.4 \times ?=42$
(a) 1.5
(b) 0.2
(c) 0.8
(d) 1.2
(e) None of these
99. $\sqrt[3]{804357}=$?
(a) 98
(b) 89
(c) 96
(d) 93
(e) None of these
100. $\sqrt{?} \div 16 \times 24=186$
(a) 14884
(b) 13924
(c) 15376
(d) 15876
(e) None of these
101. (?) $)^{2} \div(0.04)^{2} \times 5.6=117740$
(a) 33.64
(b) 6.2
(c) 38.44
(d) 5.4
(e) None of these
102. $9418-?+1436+2156=5658$
(a) 7523
(b) 7352
(c) 7232
(d) 7325
(e) None of these
103. $9865+?+3174+2257=19425$
(a) 4047
(b) 4136
(c) 4129
(d) 4092
(e) None of these
104. $\frac{9}{?} \times 33824=63$
(a) 4228
(b) 4832
(c) 2416
(d) 8456
(e) None of these
105. $(99)^{2}-(?)^{2}+(38)^{2}=8436$
(a) 57
(b) 53
(c) 49
(d) 61
(e) None of these
106. $12.36 \times 18.15+21.52=$?
(a) 250.3036
(b) 209.1448
(c) 249.454
(d) 245.854
(e) None of these
107. $(98764+89881+99763+66342) \div$
$(1186+?+1040+1870)=55$
(a) 2354
(b) 2368
(c) 2254
(d) 2404
(e) None of these
108. $(64)^{2} \div \sqrt[3]{32768}=$?
(a) 128
(b) 132
(c) 142
(d) 104
(e) None of these
109. $\frac{21 \times 14-34}{12.4+5.6-15.5}=$?
(a) 95
(b) 100
(c) 110
(d) 106
(e) None of these
110. $0.09 \times 6.8 \times ?=2.142$
(a) 2.5
(b) 4.4
(c) 3.5
(d) 2.4
(e) None of these
111. $11 \frac{1}{7}+2 \frac{5}{8}=$?
(a) $110 \frac{1}{7}$
(b) $13 \frac{45}{56}$
(c) $96 \frac{3}{8}$
(d) $13 \frac{43}{56}$
(e) None of these
112. $894 \div 28 \times \sqrt{589} \approx$?
(a) 700
(b) 686
(c) 796
(d) 775
(e) 754
113. If $(57)^{2}$ is added to the square of a number, the answer so obtained is 8010 . What is the number?
(a) 61
(b) 63
(c) 67
(d) 59
(e) None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching
114. $7275.84-889.4+124.518=$?
(a) 6550.202
(b) 6560.598
(c) 6550.958
(d) 6510.958
(e) None of these
115. $\frac{12^{2}-4^{2}}{9^{2}-3^{2}}=$?
(a) $1 \frac{7}{9}$
(b) $1 \frac{8}{9}$
(c) $1 \frac{1}{3}$
(d) 9
(e) None of these
116. $18800 \div 470 \div 20=$?
(a) 800
(b) 2
(c) 23.5
(d) 0.10
(e) None of these
117. $\sqrt{?}+136=320$ of $\frac{5}{8}$
(a) 1936
(b) 4624
(c) 4196
(d) 4096
(e) None of these
118. $777.07+77.77+0.77+7.07+7+77=$?
(a) 946.78
(b) 946.68
(c) 964.68
(d) 946.86
(e) None of these
119. $0.4 \times$? $=0.000016$
(a) 4
(b) 0.04
(c) 0.0004
(d) 400
(e) None of these
120. $4^{7} \div 16^{4} \times \sqrt{16}=$?
(a) $\frac{1}{16}$
(b) $\frac{1}{4}$
(c) 4
(d) 1
(e) None of these
121. $0.99 \times 1000 \times 14 \div 11 \div 0.7=$?
(a) 18
(b) 180
(c) 1.8
(d) 1800
(e) None of these
122. $95^{3.7} \div 95^{0.9989} \approx 95^{\text {? }}$
(a) 1.9
(b) 3
(c) 2.99
(d) 3.6
(e) 2.7
123. $\sqrt{10000}+1891.992$ of $\frac{3.001}{4.987} \approx$?
(a) 2500
(b) 1230
(c) 1640
(d) 1525
(e) 2130
124. $0.0004 \div 0.0001 \times 36.000009 \approx$?
(a) 0.10
(b) 1.45
(c) 145
(d) 14.5
(e) 1450
125. $3739+164 \times 27 \approx$?
(a) 1054000
(b) 4000
(c) 8200
(d) 690
(e) 6300
126. $9876 \div 24.96+215.005-$? ≈ 309.99
(a) 395
(b) 395
(c) 300
(d) 315
(e) 310
127. $\left[(135)^{2} \div 15 \times 32\right] \div ?=45 \times 24$
(a) 18
(b) 24
(c) 36
(d) 44
(e) None of these
128. $(96)^{2}+(63)^{2}=(?)^{2}-(111)^{2}-8350$
(a) 33856
(b) 30276
(c) 174
(d) 184
(e) None of these
129. $4368+2158-596-?=3421+1262$
(a) 1066
(b) 1174
(c) 1247
(d) 1387
(e) None of these
130. $2172 \div$? $=1832-956-514$
(a) 6
(b) 8
(c) 10
(d) 12
(e) None of these
131. $666.06+66.60+0.66+6.06+6+60=$?
(a) 819.56
(b) 805.38
(c) 826.44
(d) 798.62
(e) None of these
132. $205 \times ? \times 13=33625+25005$
(a) 22
(b) 27
(c) 33
(d) 39
(e) None of these
133. $(10)^{24} \times(10)^{-21}=$?
(a) 3
(b) 10
(c) 100
(d) 1000
(e) None of these
134. What is the least number to be added to 4321 to make it a perfect square?
(a) 32
(b) 34
(c) 36
(d) 38
(e) None of these
135. $628.306+6.1325 \times 44.0268 \approx$?
(a) 820
(b) 970
(c) 1050
(d) 1175
(e) 900

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching
136. $1896 \div 29+445 \approx$?
(a) 485
(b) 510
(c) 528
(d) 493
(e) 536
137. $(9795+7621+938) \div(541+831+496) \approx$?
(a) 9
(b) 13
(c) 17
(d) 23
(e) 29
138. $814296 \times 36 \approx ? \times 96324$
(a) 326
(b) 272
(c) 304
(d) 358
(e) 260
139. $78 \div 5 \div 0.5=$?
(a) 15.6
(b) 31.2
(c) 7.8
(d) 0.4
(e) None of these
140. $12.22+22.21+221.12=$?
(a) 250.55
(b) 255.50
(c) 250.05
(d) 255.05
(e) None of these
141. $12^{4} \times 12^{13}=$?
(a) 12^{7}
(b) 12^{39}
(c) 12^{17}
(d) 12^{-7}
(e) None of these
142. $464 \div(16 \times 2.32)=$?
(a) 12.5
(b) 14.5
(c) 10.5
(d) 8.5
(e) None of these
143. If $(9)^{3}$ is subtracted from the square of a number, the answer so obtained is 567 . What is the number?
(a) 36
(b) 28
(c) 42
(d) 48
(e) None of these
144. If $(78)^{2}$ is subtracted from the square of a number, the answer so obtained is 6,460 . What is the number?
(a) 109
(b) 111
(c) 113
(d) 115
(e) None of these
145. $4275 \div 496 \times(21)^{2} \approx$?
(a) 3795
(b) 3800
(c) 3810
(d) 3875
(e) 3995
146. $14^{13} \times 14^{3}=$?
(a) 14^{39}
(b) 14^{7}
(c) 14^{16}
(d) 14^{10}
(e) None of these
147. What is the least number to be added to 4700 to make it a perfect square?
(a) 74
(b) 69
(c) 76
(d) 61
(e) None of these
148. $21.25+22.52 \times 212.22=$?
(a) 256.99
(b) 245.99
(c) 252.99
(d) 258.99
(e) None of these
149. $\frac{3}{5}$ of $\frac{3}{4}$ of $\frac{5}{6}$ of $992=$?
(a) 388
(b) 390
(c) 372
(d) 376
(e) None of these
150. $6.4 \times ?=361.6$
(a) 63.5
(b) 52.5
(c) 66.5
(d) 56.5
(e) None of these
151. $2412+1139+5498=$?
(a) 8949
(b) 9049
(c) 8749
(d) 9249
(e) None of these
152. $3.2 \times 6.8 \times 9.5=$?
(a) 207.62
(b) 202.67
(c) 206.27
(d) 207.72
(e) None of these
153. $8994-4178-2094=$?
(a) 2720
(b) 2726
(c) 2730
(d) 2734
(e) None of these
154. $\sqrt{?}+17=\sqrt{961}$
(a) 169
(b) 256
(c) 225
(d) 196
(e) None of these
155. $9441+3991-606=? \times 53$
(a) 236
(b) 238
(c) 230
(d) 234
(e) None of these
156. $1719 \div 18=$?
(a) 95.5
(b) 96
(c) 97.5
(d) 99
(e) None of these
157. $58369+69521=?+31972$
(a) 95998
(b) 95189
95918
(d) 95981
(c)
(e)

None of these

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching
158. $5470 \div 378 \times(19)^{2} \approx$?
(a) 5236
(b) 5265
(c) 5204
(d) 5250
(e) None of these
159. What is the least number to be added to 3986 to make it a perfect square?
(a) 188
(b) 95
(c) 110
(d) 100
(e) 5224
160. $832.456-539.982-123.321=$?
(a) 196.153
(b) 149.153
(c) 169.153
(d) 176.135
(e) None of these
161. $236.69+356.74=393.39+$?
(a) 200.04
(b) 201.04
(c) 200.14
(d) 202.14
(e) 203.04
162. $\frac{35 \times 15 \times 10}{25 \times 2}=$?
(a) 105
(b) 115
(c) 70
(d) 35
(e) None of these
163. $859.05+427.89+663.17=$?
(a) 1585.91
(b) 1286.94
(c) 1950.02
(d) 1950.11
(e) 1951.01
164. $7 \times ?=29.05$
(a) 4.05
(b) 4.15
(c) 3.95
(d) 4.25
(e) None of these
165. $\frac{558 \times 45}{18 \times 4.5}=$?
(a) 314
(b) 313
(c) 312
(d) 311
(e) None of these
166. $559+965=? \times 16$
(a) 92.05
(b) 95.25
(c) 93.15
(d) 94.35
(e) None of these
167. $7 \frac{3}{4}+5 \frac{1}{4}+8 \frac{1}{2}=$?
(a) $20 \frac{1}{4}$
(b) $21 \frac{1}{2}$
(c) $21 \frac{3}{4}$
(d) $21 \frac{3}{4}$
(e) $20 \frac{3}{4}$
168. $9.1 \times 7.5 \times 6.2=$?
(a) 423.15
(b) 68.25
(c) 593.775
(d) 472.5
(e) None of these
169. $49+\sqrt{?}=87$
(a) 1444
(b) 1442
(c) 1448
(d) 1456
(e) 1460
170. $\sqrt{?}-17=22$
(a) 1511
(b) 1531
(c) 1515
(d) 1553
(e) 1521
171. $5989 \div 48 \times 11 \approx$?
(a) 1375
(b) 1370
(c) 1372
(d) 1368
(e) 1365
172. If $3 x+5 y=44$ and $10 x-2 y=16$, what is the value of x ?
(a) 7
(b) 3
(c) 5.5
(d) 6.5
(e) None of these
173. If $x+y=20$ and $x y=84$, then $(x)^{2}+(y)^{2}=$?
(a) 232
(b) 400
(c) 128
(d) Cannot be determined
(e) None of these
174. $\sqrt{876} \times 20.6+165.34 \approx$?
(a) 700
(b) 686
(c) 775
(d) 846
(e) 745

KP GATE CLASSES, NEW DELHI - INDIA'S No. 1 Architecture Coaching

Answer Key									
1	(e)	36	(a)	71	(d)	106	(d)	141	(c)
2	(c)	37	(e)	72	(d)	107	(a)	142	(a)
3	(e)	38	(b)	73	(e)	108	(a)	143	(a)
4	(a)	39	(a)	74	(a)	109	(e)	144	(e)
5	(a)	40	(e)	75	(a)	110	(c)	145	(b)
6	(d)	41	(e)	76	(e)	111	(d)	146	(c)
7	(d)	42	(d)	77	(e)	112	(d)	147	(d)
8	(a)	43	(a)	78	(d)	113	(e)	148	(e)
9	(d)	44	(e)	79	(a)	114	(d)	149	(c)
10	(e)	45	(e)	80	(d)	115	(a)	150	(d)
11	(a)	46	(c)	81	(a)	116	(b)	151	(b)
12	(c)	47	(e)	82	(c)	117	(d)	152	(e)
13	(c)	48	(c)	83	(e)	118	(b)	153	(e)
14	(d)	49	(d)	84	(e)	119	(c)	154	(d)
15	(e)	50	(a)	85	(b)	120	(d)	155	(e)
16	(a)	51	(e)	86	(b)	121	(d)	156	(a)
17	(b)	52	(c)	87	(d)	122	(e)	157	(c)
18	(d)	53	(a)	88	(d)	123	(b)	158	(e)
19	(e)	54	(c)	89	(c)	124	(c)	159	(c)
20	(b)	55	(d)	90	(b)	125	(c)	160	(c)
21	(a)	56	(a)	91	(b)	126	(c)	161	(a)
22	(d)	57	(c)	92	(a)	127	(c)	162	(a)
23	(b)	58	(b)	93	(d)	128	(d)	163	(d)
24	(a)	59	(a)	94	(d)	129	(c)	164	(b)
25	(c)	60	(b)	95	(e)	130	(a)	165	(e)
26	(a)	61	(c)	96	(c)	131	(b)	166	(b)
27	(e)	62	(b)	97	(a)	132	(a)	167	(b)
28	(c)	63	(e)	98	(e)	133	(d)	168	(a)
29	(b)	64	(b)	99	(d)	134	(e)	169	(a)
30	(e)	65	(d)	100	(c)	135	(e)	170	(e)
31	(b)	66	(a)	101	(e)	136	(b)	171	(c)
32	(e)	67	(d)	102	(b)	137	(a)	172	(b)
33	(a)	68	(c)	103	(c)	138	(c)	173	(a)
34	(c)	69	(c)	104	(b)	139	(b)	174	(c)
35	(c)	70	(c)	105	(b)	140	(e)		

ANSWERS \& EXPLANATIONS

1. (e) ? $=56.6 \times 16.6 \times 6.6$
$=6201.096$
2.

(c) $\frac{?}{46} \times 16=368$
$\Rightarrow ?=\frac{368 \times 46}{16}=1058$
3. (e) $?=999.99+99.99+9.99=1109.97$
4. (a) $?=\frac{899}{11.6}=77.5$
5. (a) ? $=85332-11638-60994$
$?=85332-72632$
\therefore ? $=12700$
6. (d) $?=\frac{3187.8}{57.75 \times 0.8}=69$

