Contents

- CIII		
1.1 BA	ASICS OF STRUCTURAL SYSTEMS	6
1.1.1	Introduction	6
1.1.2	Understanding Force	7
1.1.3	Moment and Couple	11
1.1.4	Resultant of Force System	12
1.1.5	Equilibrium of Force System	
PRA	CTICE QUESTIONS	22
ANS	WERS	24
1.2 BA	ASICS OF STRENGTH OF MATERIALS	
1.2.1	Properties of Engineering Materials	26
1.2.2	Theory of Elasticity	
1.2.3	Hooke's Law	
1.2.4	Stress-strain Diagram	31
1.2.5	Poisson's Ratio	33
1.2.6	Rigidity Modulus and Bulk Modulus	34
1.2.7	Factor of Safety and Percentage Elongation	36
	CTICE QUESTIONS	
ANS	WERS	41
2.1 BA	ASICS OF SUPPORTS, BEAMS & LOADING	
2.1.1	Types of Structural Supports	45
2.1.2	Types of Beams and Support Reactions	47
2.1.3	Types of Loading	55
PRA	CTICE QUESTIONS	63
ANS	WERS	65
2.2 SH	IEAR FORCE & BENDING MOMENT DIAGRAM	67
2.2.1	Definitions of Shear Force and Bending Moment	67
2.2.2	Shear Force and Bending Moment Diagrams	70
PRA	CTICE QUESTIONS	102
ANS	WERS	106
3.1 BE	ENDING STRESSES	113
3.1.1	Effect of Bending of a Beam	113
3.1.2	Theory of Simple Bending	113
3.1.3	Assumptions in the Simple Theory of Bending	116
3.1.4	Computation of Moment of Inertia, I	116
3.1.5	Design Criterion for Strength of Section	118

	PRAC	CTICE QUESTIONS	120
	ANSV	VERS	122
3.2	SH	EAR STRESSES	125
3	.2.1	Existence of Vertical and Horizontal Shear Stresses	125
3	.2.2	Distribution of Shear Stresses	125
3	.2.3	Distribution of Shear Stresses over Common Sections	127
	PRAC	CTICE QUESTIONS	130
	ANSV	VERS	132
4.1	Un	derstanding 'Slope' & 'Deflection'	136
4.2	Con	njugate Beam Method	137
4.3	Slo	pe & Deflection for Common Beams	140
	PRAC	CTICE QUESTIONS	142
	ANSV	VERS	143
5.1	Inti	oduction	146
5.2	Mo	des of Failure of a Column: Elastic Instability	147
5.3	Bu	ckling Failure: Euler's Theory	148
5.4	End	l Conditions and Effective Length	150
5.5	Rac	lius of Gyration and Slenderness Ratio	152
	PRAC	CTICE QUESTIONS	154
	ANSV	VERS	155
6.1	IN	TRODUCTION	159
6	.1.1	Understanding Truss	159
6	.1.2	Classification of Truss	160
6	.1.3	Truss Geometry & Parts of a Truss	161
6.2	TR	USS ANALYSIS	163
6	.2.1	Determinacy and Indeterminacy	163
6	.2.2	Zero Force Members	164
6	.2.3	Method of Joints	165
6	.2.4	Method of Sections	170
6	.2.5	Truss Framing and Classification	172
6.3	SP	ACE FRAME STRUCTURES	179
6	.3.1	Introduction	179
6	.3.2	Classification of Space Frame Structures	182
6	.3.3	Advantages & Applications of Space Frames	184
	PRAC	CTICE QUESTIONS	185
	ANSV	VERS	188
7.1	Pla	in & Reinforced Cement Concrete	195

7.2	Grade of Concrete	. 195
7.3	Working Stress Method & Limit State Method	. 196
7.4	General Recommendations	. 197
7.5	Limit State of Collapse: Flexure	. 199
7.6	Limit State of Collapse: Shear	.201
7.7	Limit State of Collapse: Compression	. 202
7.8	Beams	203
7.9	Slabs	.204
7.10	Footings	. 205
7.11	Miscellaneous Points	.206
P	RACTICE QUESTIONS	. 208
A	NSWERS	.210
8.1	Arch, Shell & Dome	.214
8.1.	1 Arch	.214
8.1.	2 Shell	.219
8.1.	3 Dome	.223
8.2	Tensile & Plate Structures.	. 228
8.2.	1 Cable Supported Structures	.228
8.2.	2 Membrane Structures	.232
8.2.	3 Plate Structures	.234
8.3	High-rise Structures	. 242
8.4	Miscellaneous Structures	.253
P	RACTICE QUESTIONS	.257
A	NSWERS	.260

CHAPTER 1: INTRODUCTION TO BUILDING STRUCTURES

WEIGHTAGE & TIPS (INTRODUCTION TO BUILDING STRUCTURES)

Please refer to the weightage of this topic (Chapter 1: Introduction to Building Structures of Book 4) from GATE 2012 to GATE 2021 tabulated below;

GATE YEAR	WEIGHTAGE (Marks)
2021	0
2020	0
2019	0
2018	0
2017	0
2016	0
2015	0
2014	0
2013	0
2012	0
Average	0 Marks

Students are advised to remember the following points, before you start studying this Chapter:

- This chapter might not have a huge weightage for GATE exam; but it is very important to clearly understand the basic concepts discussed in this chapter.
- Only by understanding the basics discussed in this Chapter, the scoring areas of Structures will become easy to understand.
- Understanding the concepts of Stress and Strain is very important.
- Have a special emphasis on the measurement units of various terms discussed, as it can be important in solving numerical questions of future chapters.
- Even though the above listed table shows zero marks weightage, there are instances where this chapter has a weightage of 4 marks (like in GATE 2006).

1.1 BASICS OF STRUCTURAL SYSTEMS

1.1.1 Introduction

The structure of a building (or other object) is the part which is responsible for maintaining the shape of the building under the action of the gravitational & environmental loads. It is important that the structure as a whole (or any part of it) does not fall down, break or deform to an unacceptable degree when subjected to such forces or loads. It should safely transmit the resulting forces to the supporting ground. It should maintain the integrity and serviceability of the built form.

Any structure is made up of STRUCTURAL ELEMENTS (Beams, Columns, Slab, and Trusses) and NON-STRUCTURAL ELEMENTS (Partition wall, false ceilings, Windows, Doors, Parapet). The STRUCTURAL ELEMENTS, put together, constitute the STRUCTURAL SYSTEM.

Structural configuration or system is governed by nature of loading (concentrated heavy moment wind seismic); structural material (brick, RCC, steel, ductile or brittle); support system (simply supported, cantilever, continuous, flexible) – structural behaviour (stable, shear, bending, buckling, deflection, crack)

Types of Structural Systems include; Frames, Trusses, Space Frame, Arch, Vault, Shell Structure, Dome, Tensile, and Plate structures.

Basic objectives of Structural Engineering are discussed below;

- Safety: Strength to resist the various stresses induced in different structural elements. Sufficient
 margins of safety to have an acceptable low risk of collapse under possible overloads during its
 designed life.
- Stability: To prevent overturning, sliding, or buckling of the structure, or parts of it, under action of different loads.
- Serviceability: To ensure satisfactory performance under service load conditions and to contain deflections, crack-width, story drift, vibration within the acceptable limit.
- Durability: Providing impermeability, corrosion resistance, control of creep and shrinkage, by using high performance materials. The materials used must be resistant to corrosion, spalling (pieces falling off), chemical attack, rot or insect attack.
- Economy: Efficiency and economy of structures are important parts of structural engineering. Many buildings have been built under strict financial constraints. The need for selecting an efficient structural system is essential to keep the cost of project under control.
- Ease of maintenance
- Fire resistance
- Aesthetics: Structural systems and structural components designed by the engineer plays a major role in the aesthetic appearance of structures. The visual appearance of buildings mainly depends on the conceptual composition of three dimensional forms. A well composed form provides a unique and easy structural solution.
- It is indeed a challenge, and a responsibility for the structural designer to design a structure that is not only appropriate for the architectural purpose, but also strikes the right balance between safety and economy.

Mechanics deals with study of forces and their effects on any object or body in rest or under motion.

Engineering Mechanics: It deals with mechanics of rigid body and study of external forces and their effects on rigid body.

Statics: Deals with the study of forces on a body which is at rest.

$$\sum F_{x}=0$$

$$\sum F_y = 0$$

Dynamics: Deals with study of motion and forces on a body which is in motion.

Solid Mechanics: It deals with internal resisting forces developed in a deformable body under the action of external forces.

Stress,
$$\sigma = \frac{P}{A}$$

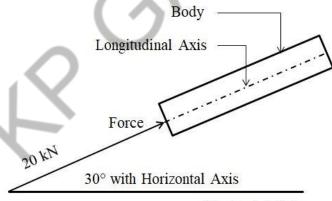
Modulus of Elasticity,
$$E = \frac{\sigma}{\epsilon}$$

The concepts like stress, strain and modulus of elasticity are discussed in detail under 'Basics of Strength of Materials'

Fluid Mechanics: It deals with mechanics of compressive forces on the fluid & fluid particles.

1.1.2 Understanding Force

Force is an action that tends to change the state of inertia (rest or motion) of a rigid body, i.e., an action that tends to change the shape of an elastic body.

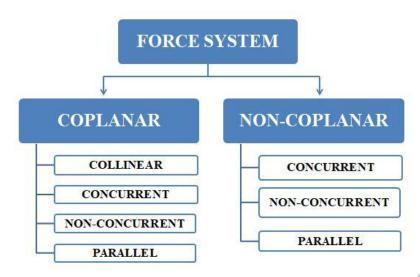

Characteristics of a Force

1) Magnitude: 20 kN

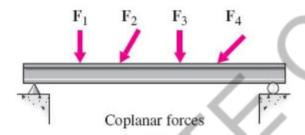
2) Direction: 30° with Horizontal Axis

3) Point of application: Point A

4) Line of Action: Longitudinal Axis of the Body

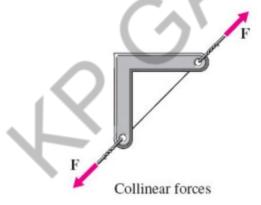


Horizontal Axis

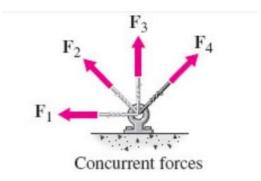

System of Forces:

If more than one force acting on a body or a group of bodies, then it is called a 'FORCE SYSTEM'. The force system is classified based on the direction and orientation of the lines of action of the forces.

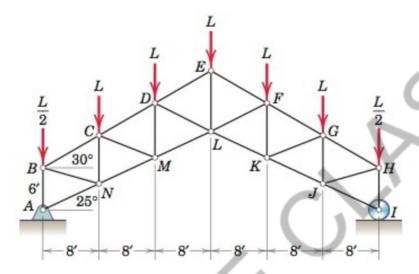
Classification of systems of forces is shown below;

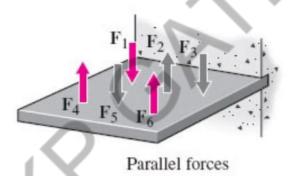


COPLANAR FORCES: Coplanar Forces are forces where the lines of action of all forces lie on the same plane.



Various types of coplanar forces are discussed below. Example for each type is also given;

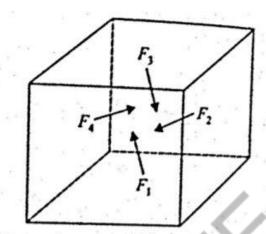

Collinear Forces: The line of action of the entire force system is in the same direction.


Concurrent Forces: The line of action of all forces passing through a single point.

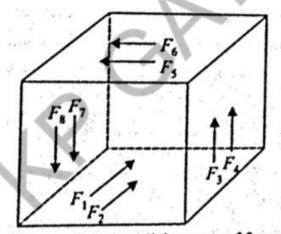
Non-concurrent Forces: The line of action of all forces does not pass through a single point. Force system shown acting on the truss below is non-concurrent coplanar force system;



Parallel Forces: The lines of actions of all forces are parallel to each other.


NON-COPLANAR FORCES: Non-coplanar Forces are forces where the lines of action of all forces lie on different planes.

Concurrent Forces: The line of action of all forces passing through a single point.


Non-coplanar concurrent system of forces

Non-concurrent Forces: The line of action of all forces does not pass through a single point.

Non-coplanar non-concurrent system of forces

Parallel Forces: The lines of action of all forces are parallel to each other.

Non-coplanar parallel system of forces